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Quantal Information Theory
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Information to be gained from the measurement of observables in many areas
of physics can be represented by the concatenation of Hermitian, pseudo-
Hermitian, and real qubits to form a quantal analogs of the `tape’ of a Turing
machine. There is a distinction between selected information, which is in principle
predictable, and unselected information, which is indeterminate. Qubits and tapes
are subject to transformations which may be used to convert them to selected
form. It is shown how to represent information derived from quantum mechanics,
quantum statistics, particle physics, and cosmology in this way.

1. INTRODUCTION

The storage, processing, and output of information, according to Turing

(1936), requires a `tape’ consisting of a sequence of two-valued bits and a

`machine’ that scans and modifies the tape in a deterministic manner. When
the initial state of the tape is given, the output of such a machine, typical of

most contemporary computers, is completely predictable in principle, and,

with Shannon and Weaver’ s (1949) definition, the information to be gained

from it is zero. However, a significant generalization of the Turing machine,

operating on a quantal analog of Turing’ s tape, was described by Benioff
(1980, 1982), and in more recent years there has been considerable interest

in the possibility of quantum computation (Hirota et al., 1997), especially

since the work of Deutsch and Josza (1992) and Schor (1994) suggesting

that it could facilitate the performance of some tasks very much more effi-

ciently than is possible at present. But the outcome of quantal information

processing is not predictable in general, and there are difficulties in the
implementation of quantum computing (see, e.g., Barenco, 1996), of which
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those associated with preparing and scanning a quantal tape have come nearest

to resolution (Zak and Willliams, 1998).

It is remarkable that for a long time following the important work of
Brillouin (1964) the implications of quantal information theory received little

attention, in spite of their potential importance for the understanding of

theoretical physics and quantum mechanics in particular. Often unnoticed,

though essential for areas such as quantal computing, is the distinction

between selected information, which is in principle predictable, as in the

detection of a particle (de Broglie, 1959), and unselected information, which
is not uncertain in the sense of classical information theory, but indeterminate.

Also, in the literature there are physical hypotheses which are supported by

a considerable amount of experimentally derived information, and others

concerning which no information is even possible.

This paper will be concerned principally with the representation in a

standard form, comparable with Turing’ s tape, of the quantal information
associated with physical observables in the context of theoretical physics. It

will have some relevance to quantal computing, since in all instances similarity

transformations will be obtained which convert the quantal information to

selected form. But information theory illuminates a variety of problems of

contemporary interest, some of which, such as string theory, the theory of
consciousness, and the geometry of space-time, can only be referred to in

passing within the scope of the paper.

The intention of the following is to give a useful definition of quantal

information, and to discuss in a general context the representation of quantal

information in terms of elementary qubits and the creation and assembly of

qubits to form the different kinds of observables at present recognized by
physics. There are three fundamental types of qubit, which may be character-

ized as Hermitian, pseudo-Hermi tian, and real, with two different pseudo-

Hermitian varieties. Each type has an irreducible two-dimensional matrix

representation, within which corresponding creation and annihilation opera-

tors may be defined. It will be shown that information derived from almost

every branch of modern physics may be represented as quantal `tapes’ con-
sisting of qubits of different types, but with rather simple structures and

symmetries.

2. REPRESENTATION OF QUANTAL INFORMATION

In quantum mechanics, any observable may be represented by a matrix

A with a set of real eigenvalues Ar which are possible values resulting from

a measurement of the observable. In spectral form,
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A 5 o
r

Argr (1)

where the gr constitute a complete set of minimal projections. The eigenvalues

may be ordered so that Ar # As when r , s, and the summation ( r may be

interpreted as an integration * dr if the eigenvalues are continuous. The

subscript r can always be expressed as a binary number:

r 5 o
j

2jrj (r 2
j 5 rj) (2)

where j takes nonnegative values if the spectrum is discrete, but negative

values if the spectrum is at least partly continuous. Selected observables,

whose measured values are in principle predictable, may be represented by
diagonal matrices. In the stationary states of an isolated system, and also in

the states of a system in equilibrium with its environment, the energy is a

selected observable.

The projections gr are observables with a single nonvanishing eigenvalue

1, and are required to be Hermitian if the measurement is in the inertial frame

of the observer. The expectation value ^ A & of A is ( r Arpr , where pr is the
(nonvanishing) probability that the measurement of A will yield the value

Ar. In the following, the information I to be gained from the measurement

of A will be treated as an observable, with eigenvalues Ir 5 2 log pr:

I 5 2 o
r

log( pr)gr (3)

The maximum amount of information to be gained from the measurement

of a selected observable of a system is connected by the relation I 5 2 log P
with the statistical matrix P of von Neumann (1932). But since pr 5 ^ gr&
even if the observable is not selected, I has the expectation value

^ I & 5 2 o
r

log( pr)pr (4)

which is Shannon’ s classical definition of information to be gained. A con-

scious observer may become aware of the result of the measurement of an

observable by quantal processes described in detail elsewhere (Green and

Triffet, 1997a, b).

We shall show in the following how the information content of any

observable may be reduced to quantal bits. A qubit may be defined, by
analogy with its classical counterpart, as an observable with two eigenvalues

0 and 1. As such it is an elementary projection, represented by a matrix n
of the second degree; it satisfies the characteristic identity n 2 5 n and has

unit trace and determinant zero:
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tr(n) 5 n11 1 n22 5 1, det(n) 5 n11n22 2 n12n21 5 0 (5)

If p 5 ^ n & is the expectation value of n, the information In gained by the

measurement of n is given by

In 5 2 log( p)n 2 log ( pc)n c, n c 5 1 2 n, p c 5 1 2 p (6)

where n c is the complement of n, etc.
A matrix such as n can be presented as a tensor product of spinor and

cospinor factors:

n 5 f f , f f 5 1 (7)

where f f denotes the scalar product. The factorization can be made unique

by specifying the components

f 1 5 n12 /(n22)
1/2, f 2 5 f 2 5 (n22)

1/2, f 1 5 n21 /(n22)
1/2 (8)

Similarly, for the complementary qubit n c,

n c 5 f c f c, f c f c 5 1, f c f 5 f f c 5 0 (9)

The matrix n representing a qubit can also be expressed in terms of a

vector matrix j , formed from three anticommuting matrices t a of order 2,
and a real unit vector j a (a 5 1, 2, 3):

n ( j ) 5 1±2 (1 1 j ), { t a , t b} 5 2 h ab, h ab j a j b 5 1 (10)

where h ab is the informational metric tensor in three dimensions. Two qubits

n 5 n ( j ) and n8 5 n ( j 8) are of the same type and variety if they are connected

by a similarity transformation n ® n8 5 unu 2 1 generated by the commutator

[ j 8, j ]:

n ( j 8) 5 u ( j 8, j )n ( j )u 2 1( j 8, j ), u ( j 8, j ) 5 exp(1±4[ j 8, j ]) (11)

Assuming that t 3 is diagonal, if j 8 has components j 8a 5 d a
3, then the compo-

nents of j a are identified as the parameters of the particular transformation

u ( d 3, j ) required to convert n ( j ) to selected form, in which the result of a
measurement of the qubit is in principle determinate. But in general u ( j 8, j )

belongs to a continuous group of a type depending on the informational

metric, and there are three different types:

(1) If the metric is Euclidean, then ( t 1, t 2, t 3) are Pauli matrices; the

group of transformations is SU(2) and we shall refer to the qubits as Hermitian.

(2) If the metric is pseudo-Euclidean with signature ( 2 1, 1, 2 1), then
(i t 1, t 2, i t 3) are Pauli matrices; the group of transformations is SU(1, 1) and

we shall refer to the qubits as pseudo-Hermitian. There are two different

varieties of pseudo-Hermitian qubits, distinguished by the sign of j 2; n t 2/ j 2

is a Hermitian qubit.
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(3) If the metric is pseudo-Euclidean with signature (1, 2 1, 1), then ( t 1,

i t 2, t 3) are Pauli matrices; the group of transformations is Sl(2, r) and we

shall refer to the qubits as real.
We shall give some examples of each type.

The number of fermions of a particular type may be represented by a

Hermitian qubit. The corresponding fermion creation and annihilation matri-

ces c and c satisfying

cc 5 n, cc 5 n c, c2 5 c 2 5 0 (12)

can be defined as outer (matrix) products of the spinor and cospinor factors

of n and n c:

c 5 f f c, c 5 f c f (13)

A projection for the spin of a system of spin half is a Hermitian qubit,

and the vector j a determines the direction of the spin. The transformation

(11) corresponds to a rotation of the inertial frame of the observer, and the

spin angular momentum of the system (in units of " ) is 2 1±4 i [ t a , t b]. Similar

considerations apply naturally for isospin.

If

j 1 5 6 k 1/(mc), j 2 5 6 E /(mc2), j 3 5 6 k 3/(mc) (14)

where E is the energy of a system of mass m and k a is its momentum in the
plane of its motion (so that k 2 5 0), then the qubit is pseudo-Hermitian and

represents the state of motion of a particle in the momentum representation.

The sign determines the variety; the positive sign is normally chosen for

particles and the negative sign for antiparticles. In this instance the transforma-

tion (11) corresponds to a Lorentz transformation of the inertial frame of

the observer.
A point of a two-dimensional subspace of de Sitter space with indefinite

metric and space-time coordinates x a 5 R j a can be represented by a real

qubit. Then the transformation (11) in general includes a translation in space-

time as well as a Lorentz transformation of the inertial frame of the observer.

A point on the surface of a string in string theory (see, e.g., LuÈ st and

Theisen, 1989) can also be represented by a real qubit. Locally, a string is
usually pictured as cylindrical, but a hyperboloid of one sheet has the same

topology as a cylinder and all points are equivalent in de Sitter space. The

action associated with a string between the times 0 and x 2 is identified with

its surface area and has the value

A 5 2 m #
x2

0

[1 2 (dx1/dx2)2]1/2 dx2 (15)

corresponding to the Lagrangian m [1 2 (dx1/dx2)2]1/2, as required by the

special theory of relativity. There is a reciprocal relation between pseudo-
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Hermitian and real qubits, illustrated by the identification in an unquantized

theory of the energy-momentum k a in (14) with m dx a/ds, where ds2 5 h ab

dx a dx b.

3. QUANTAL TAPES

A natural generalization of the qubit is the quantal tape obtained by the

concatenation of a finite number or a countable infinity of qubits. Such a

tape may be represented as the direct product of the matrices n[1], n[2], n[3],

. . . , representing the separate qubits:

n 5 n [1] ^ n [2] ^ n [3] . . . 5 n (1) n (2) n (3) . . . (16)

where the commuting factors n(r) of n, representing the elements of the

tape, are

n (1) 5 n [1] ^ 1 ^ 1 . . . , n (2) 5 1 ^ n [2] ^ 1 . . . , (17)

n (3) 5 1 ^ 1 ^ n [3] . . . .

The tape is subject to transformations of the type shown in (11), and there

is a particular transformation of that type which converts the tape to selected
form. As in (12), each element of the tape can be factorized,

n (i) 5 c(i) c (i) 5 1 2 c (i) c(i), c(i)2 5 c (i)2 5 0 (18)

but, unlike different fermion creation and annihilation operators, factors with

different superscripts j commute with one another.

The direct product n is a minimal projection, belonging to a complete

commuting orthogonal set defined by

gr 5 &
j

(c (j))rj n (c(j))rj (19)

A set of minimal projections gr of this type can be used to construct any

observable A, as shown in (1). According to (3), the information I to be
gained from the quantal tape is the sum of the information to be gained from

the separate qubits:

I 5 o
j

I ( j) 5 o
j

[log( p( j))n ( j) 1 log( p( j)c)n ( j)c] (20)

where p( j) 5 ^ n( j) & 5 1 2 p( j)c.
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4. QUANTUM STATISTICS

If unit vectors j ( j) are defined as in (10),

n ( j) 5 1±2 (1 1 j ( j)) (21)

and the factors c( j) and c( j) by (18), a set of fermion creation and annihilation

matrices f ( j) and f ( j) may be defined by

f ( j) 5 1 &k , j
j (k) 2 c( j), f ( j) 5 c ( j) 1 &k , j

j (k) 2 (22)

A quantal tape of indefinite length can also be used to represent a boson

number in the form

N 5 o
j

2jn (j) ( j $ 0) (23)

where each n( j) is a qubit with eigenvalues n ( j)
0 5 0 and n ( j)

1 5 1. In a

measurement of N, the eigenvalue n ( j)
k (k 5 0 or 1) of n(j) is the ( j 1 1)th

binary digit of the measured value Nk 5 ( j 2jn ( j)
k . The corresponding creation

and annihilation matrices b and b, satisfying bb 2 bb 5 1 and bb 5 N, can

be expressed in terms of the factors c ( j) and c( j) of (18),

b 5 o
j

l 1/2
j 1 &k , j

c(k) 2 c ( j), b 5 o
j

l 1/2
j c( j) 1 &k , j

c(k) 2 (24)

with coefficients l 1/2
k depending on the n( j) with j . k:

l k 5 2k 1 o
j . 0

2k 1 j n (k 1 j) (25)

We thus obtain representations of the bosonic matrices in terms of fermionic

creation and annihilation matrices c ( j) and c( j) affecting individual constituents

of the quantal tape. By an obvious extension we obtain the corresponding

representations

N a 5 o
j

2jn ( j)
a 5 b a b a

b a 5 o
j

l 1/2
j, a 1 &k , j

c(k)
a 2 c ( j ? r)

a , b a 5 o
j

l 1/2
j, a c( j)

a 1 &k , j
c (k)

a 2
l k, a 5 2k 1 o

j . 0

2k 1 j n (k 1 j)
a (26)

for any number of bosons, in terms of the factors c ( j)
a and c( j)

a of a countable

set of qubits n ( j)
a .
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A set of parafermion creation and annihilation matrices of order p can

be defined in terms of the mp matrices c (u)
j and c(u)

j ( j 5 1, 2, . . . , m; u 5
1, . . . , p) obtained by the factorization n (u)

j 5 c(u)
j c (u)

j of the commuting
projections n (u)

j constituting a quantal tape. The matrices

e(u)
j 5 c(u)

j 1 &k , j
j (u)

k 2 , e (u)
j 5 c (u)

j 1 &k , j
j (u)

k 2 ( j (u)
k 5 2n (u)

k 2 1)

(27)

commute for different values of u, but satisfy anticommutation relations

{e(u)
j , e(u)

k } [ e(u)
j e(u)

k 1 e(u)
k e(u)

j 5 d jk,

{e(u)
j , e(u)

k } [ e(u)
j e(u)

k 1 e(u)
k e(u)

j 5 0 (28)

{e(u)
j , e(u)

k } [ e(u)
j e(u)

k 1 e(u)
k e(u)

j 5 0

so that, as in the author ’ s original paper (Green, 1953), the parafermion

creation and annihilation matrices can be defined by

e j 5 o
p

u 5 1
e(u)

j , ej 5 o
p

u 5 1
e(u)

j (29)

The number mj of parafermions of the jth type is the observable given by

mj 5 1±2 ([ej , e j] 1 p) 5 1±2 o
p

u 5 1

([e(u)
j , e(u)

j ] 1 1) (30)

and has integral eigenvalues extending from 0 to p, as required.

As noted by Ryan and Sudarshan (1963), matrix representations of

so(m 1 1) can be obtained with elements expressed in terms of the conjugate
elements e j and ej and

e j
k 5 1±2 [e j, ek] 5 1±2 o

p

u 5 1

[e(u)
j , e(u)

k ], e jk 5 1±2 [e j, ek] 5 1±2 o
p

u 5 1

[e(u)
j , e(u)

k ]

ejk 5 1±2 [ej , ek] 1 1±2 p d jk 5 1±2 o
p

u 5 1

([e(u)
j , e(u)

k ] 1 1±2 d jk) (31)

The Lie algebra so defined has subalgebras so(2m) with elements e j
k, e jk, and

ejk and su (m) with elements e j
k, while u (2m) has the subalgebra sp(2m) with

elements e j
k 1 e j 1 N

k 1 N, e j
k 1 N 1 e k

j 1 N, and e j 1 N
k 1 e k 1 N

j , so that representations

of all the classical Lie algebras can be obtained in terms of qubits in this

way. For the exceptional algebras, 27 pairs of parafermion creation and

annihilation matrices e( j,k,l) and e( j,k,l) (1 # j, k, l # 3) are required for E6,

45 pairs e( jk,l) and e( jk,l) (1 # j Þ k # 6, 1 # l # 3) for E7, 84 pairs e( jkl)
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and e( jkl) (1 # j Þ k Þ l # 9) for E8, 18 pairs e( jk,l) and e( jk,l) (1 # j, k # 3,

1 # l # 3) required for F4, and 3 pairs e j and ej (1 # j # 3) required for

G2. With this notation, the elements of the exceptional algebras are as follows:

E6: e( j,b,c)
(k,b,c), e(a, j,c)

(a,k,c), e(a,b, j)
(a,b,k), e( j,k,l) 1 e jax e kby e lcze(a,b,c)(x,y,z) and conjugates

E7: e( jb,x)
(kb,x), e(ab, j)

(ab,k), e( jk,l) 1 1±3 e jkabcd e lyze(ab, y)(cd,z) and conjugates

E8: e( jbc)
(kbc), e( jkl) 1 (1/40) e jklabcxyze(abc)(xyz) and conjugates

F4: e( jb;x)
(kb;x), e(ab; j)

(ab;k), e( jk;l) 1 1±3 e jab e kcd e lyze(ac; y)(bd;z) and conjugates

G2: e j
k, e j 1 e jklekl and conjugates

Representations of superalgebras such as osp(m, m8) can be constructed

in a similar way from parfermion and paraboson creation and annihilation

matrices.

5. NONRELATIVISTIC QUANTUM MECHANICS

The construction already given for boson creation and annihilation matri-

ces b a and b a allows the representation of any number of canonical coordinate

and momentum observables q a and p a satisfying the canonical commutation

relation q a p b 2 p b q a 5 i d a b , thus

q a 5 2 2 1/2(b a 1 b a ), p a 5 2 2 1/2i (b a 2 b a ) (32)

These observables have a continuum of eigenvalues with eigenvectors in the

countably infinite-dimensional representation of the boson matrices. More

typically, the eigenvalues of some function A 5 A (q, p) of the canonical

observables, such as the Hamiltonian energy, are required, and these can be
obtained by a factorization method which makes use of the information-

theoretic representation of the observable.

The method relies on the sequential construction of the commuting

observables

A (r) 5 Arg1 1 Ar 1 1g2 1 Ar 1 2g3 1 . . . (r 5 1, 2, 3, . . .) (33)

starting with A(1) 5 A. The gr are projections corresponding to the eigenvalues

Ar , and are supposed to be expressed as shown in (19), from which it follows

that any pair may be factorized in the form

gr 5 hrshsr, gs 5 hsrhrs, hrs 5 &
j

(c( j))rjn &
k

(c(k))rk (34)

When the gr are diagonal, the hr 1 1r are codiagonal matrices.

Since A(r) 2 Ar is positive definite but has a vanishing lowest eigenvalue,

this matrix can be factorized as A(r) 2 Ar 5 cr cr , where
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cr 5 (Ar 1 1 2 Ar)
1/2hr 1 1, r 1 (Ar 1 2 2 Ar)

1/2hr1 2, r 1 1

1 (Ar 1 3 2 Ar)
1/2hr 1 3, r 1 2 1 ? ? ? (35)

and is the conjugate of cr. Then the eigenvalues Ar together with the factors

cr , cr , and the A(r 1 1) are successively determined by the relations

A (r) 5 crcr 1 Ar , A (r 1 1) 5 cr cr 1 Ar (36)

The factors cr and cr of A(r) 2 Ar in (35) are not unique, and may be replaced

by other matrices cru and ucr if u and u satisfy the unitary or pseudounitary

condition uu 5 1, but this change does not affect the eigenvalue. The particular

factors chosen above ensure that A (r1 1) commutes with A (r), but that feature
is not essential for the efficacy of the factorization method and any sequence of

factorizations consistent with (36) will yield the same eigenvalues. However, it

should be noted that there are normally at least two values of Ar which allow

the matrix A(r) 2 Ar to be factorized into conjugate matrices cr and cr , and

it is necessary to choose the greater of these values when the eigenvalues

are in ascending order. There are obviously two possibilities: the eigenvalues
may increase indefinitely as r ® ` , or they may approach a limiting value;

in the latter event, there is normally a continuum of eigenvalues beyond

the limit.

We note also that from (44) it follows that A(s 1 1)cs 5 csA
(s), so that

c0c1 . . . cr cr . . . c1c0 5 (A 2 A0)(A 2 A1) . . . (A 2 Ar) (37)

with r 1 1 vanishing eigenvalues.
A simple example is provided by the determination of the energy levels

of two bodies with an attractive Coulomb potential e+e 2 /q together with a

weak constraining force increasing linearly with separation to resolve the

continuum. The Hamiltonian energy of the relative motion is given by H 5
A /2m, where m is the reduced mass of the system and

A 5 p 2 2 l (l 1 1)/q 2 1 2me+e 2 /q 1 g 2q 2 (38)

where l is the orbital quantum number and qp 2 pq 5 i. The factors of A 2
A(0) in particular and A 2 A(r) in general are easily seen to be given by

cr 5 p 2 i ( a r 1 b r /q 2 g r q), cr 5 p 1 i ( a r 1 b r /q 2 g r q) (39)

with a 2
0 5 2 A0, b 0 5 l 1 1, and g 0 5 g . The eigenvalues Hr 5 Ar /2m of

the energy are obtained from the relations (44), which yield

Ar 5 2 a 2
r 1 (2 b r 1 1) g r , a rb r 5 2 me+e 2 ,

(40)

b r 5 l 1 r 1 1, a rg r 5 a 0 g

For very small values of g the lower negative values of Hr approximate

closely to the energy levels of a hydrogenlike atom, but the positive values
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corresponding to ionized states are very closely spaced and approximate to

a continuum.

6. REPRESENTATIONS OF THE DE SITTER GROUP

The simplest representations on a quantal tape of the Lorentz group,
including rotations in three dimensions, are on combinations of Hermitian

and pseudo-Hermitian qubits. The rotations for a system of spin 1±2 s can be

represented on a segment n s ( j ) of the tape consisting of a product of s
identical Hermitian qubits:

n s ( j ) 5 &
r

n(r)( j ) (r 5 1, . . . , s )

and depending on single Euclidean vector j a. The transformation n s ( j ) ®
n s ( j 8) is effected by a unitary matrix

v ( j 8, j ) 5 &
r

exp( 2 1±4[( j
(r)8, j (r))], j (r) 5 j a s (r)

a (41)

and the components sab of the spin angular momentum of the system, defined

as generators of rotations, are therefore given by

Sab 5 2 1±4 i o
j

[ s (r)
a , s (r)

b ] (42)

The representation on the tape is completely symmetric in the sets of Pauli

matrices s (r)
a , so that states with spin less than 1±2 s are excluded.

Lorentz transformations are represented in a similar way on a segment

n t ( j Ä ) of the tape consisting of a product of another set of s pseudo-
Hermitian qubits

n t ( j Ä ) 5 &
r

n ( s 1 r)( j Ä ), n ( s 1 r)( j Ä ) 5 1±2 (1 1 j Ä (r)), j Ä (r) 5 j Ä a t (r)
a (43)

where the (i t (r)
1 , t (r)

2 , i t (r)
3 ) are sets of Pauli matrices, so that the vector j Ä a is

pseudo-Euclidean. The Lorentz transformations are generated by matrices sÄ ab

given by

sÄ ab 5 2 1±4 i o
j

[ t Ä (r)a , t Ä (r)b ] (44)

As already noticed, the vector j Ä a may be interpreted as the energy-

momentum of a system, and the sign of the component j Ä 2 determines whether
the system is regarded as consisting of matter or antimatter. The momentum

is restricted to a plane, so that the Lorentz transformations include rotations

about only one axis. However, the tape n 5 n s n t obtained by combining

the Hermitian and pseudo-Hermitian segments carries representations of a
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complete set of motions in a de Sitter space, which is four-dimensional and

approximates closely to special relativistic space-time in any small region.

The factor n(r)n( s 1 t ) of n may also be written

n (r)n ( s 1 r) 5 n (r)q (r), q (r)(v) 5 1±2 (1 1 v j g (r)
j ( j 5 0, 1, 2, 3, 4)

v j 5 ( j Ä 2, j Ä 1 j Ä 1, j Ä 1 j Ä 2, j Ä 1 j Ä 3, j Ä 3)

g (r)
j 5 ( t ( j)

2 , t ( j)
1 s ( j)

1 , t ( j)
1 s ( j)

2 , t ( j)
1 s ( j)

3 , t ( j)
3 ) (45)

where the g (r)
j are sets of Dirac matrices (in the usual notation, except that

g (r)
4 5 i g (r)

5 ) and the v j are projective components of a relativistic velocity
related to the energy-momentum by

v j 5 6 k j/m, h jkv
jv k 5 1 (46)

where h jk has the signature (1, 2 1, 2 1, 2 1, 2 1). The component k 4 of k j

is orthogonal to the space-time surface in de Sitter space, and is therefore

very near to zero for any system in a local inertial frame.

If the spin and generalized Dirac matrices of the system are denoted by

sa 5 1±2 o
r

s (r)
a , a j 5 o

t
g (r)

j (47)

the tape n representing the system satisfies the equations

j asan 5 sn, k j a jn 5 mn (48)

The tape is therefore a relativistic density matrix for a free system in a pure

state, and can be factorized in the form

n 5 x x Å , x 5 &
r

f (r), x Å 5 &
r

f Å (r) (49)

where n (r)
s n (r)

t 5 f (r) f Å (r). The spinors x and x Å are then of the type commonly

used in relativistic quantum mechanics.

If real, instead of pseudo-Hermi tian qubits are used, the resulting tape

may be used to encode information concerning the position of an event in
space-time, typically the point of emission or absorption of a particle. When

the real qubits are substituted for the pseudo-Hermitian qubits in (45), we have

n(r)n( s 1 r) 5 n(r)q(r)( y), q(r)( y) 5 1±2 (1 1 iy j g (r)
j ) ( j 5 0, 1, 2, 3, 4)

(50)

so that h jky
jy k 5 1 with a metric that now has the signature ( 2 1, 1, 1, 1, 1).

If x j 5 Ry j, the x j are projective coordinates in a de Sitter space of curvature

R 2 1, which approximate closely to the space-time coordinates of special

relativity in any neighborhood that is small compared with R. If we write
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n 5 n(y), the transformation n( y) ® n( y8) 5 u( y8, y)n( y)u 2 1( y8, y) is effected

by the matrix

u( y8, y) 5 &
r

exp( 2 1±4 y jy8k[ g (r)
j , g (r)

k ]) 5 exp(1±2 iyjy8k a jk)

a jk 5 1±2 i [ a j , a k] (51)

The a jk are generators of the de Sitter group in a symmetric representa-
tion, satisfying

[ a jk, a l] 5 i( h kl a j 2 h jl a k)

[ a jk, a lm] 5 i( h kl a jm 2 h jl a km 2 h km a jl 1 h jm a kl) (52)

They can all be interpreted as fundamental physical observables of a system

represented by the tape. The energy E, the momentum P, the angular momen-

tum J, and the central vector C 5 MQ (where M is the mass and Q is the

position vector of the centre of mass) of the system in arbitrary units may
be defined by

E 5 " c a 04 /R, (P1, P2, P3) 5 " ( a 14, a 24, a 34)/R

(J1, J2, J3) 5 " ( a 23, a 31, a 12), (C1, C2, C3) 5 " ( a 01, a 02, a 03)/c (53)

Because c and R are both very large in comparison with observables with

the same dimensions, components of both Q and P very nearly commute,

and as E /(Mc2) ’ 1, the commutation relations QaPb 2 PbQa 5 i " d ab of

nonrelativistic quantum mechanics are also satisfied to a very good

approximation.
As generators of transformations of the tape representing a system occu-

pying a region V, the fundamental observables are additive on the region.

For a system in equilibrium with its environment, the information I to be

gained is also an additive function, and a linear relation of the type

I 5 2 b (E 1 W 2 u ? P 2 v ? J 2 ( x aNa) (54)

must therefore hold, where W 5 * p dV is the work function, Na is the

number of particles of the ath type in the region, and the parameters have a
well-known thermodynamic significance. This relation may be used to justify

Shannon’ s identification of the classical information ^ I & with the entropy, in

suitable units.

7. GRAVITATIONAL AND COSMOLOGICAL EFFECTS

We now consider the more general use of real qubits in the coding of

information concerning events in a Riemannian space-time consistent with
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Einstein’ s theory of gravitation and cosmologies more complex than those

based on de Sitter space. Each event is assigned discrete values of a set of

coordinates x l ( l 5 0, 1, 2, 3) which are continuous variables arbitrarily
constructed by the observer to interpolate between different events. The

assignment of coordinates is based on information derived mainly from the

observation of photons, and to a lesser but increasingly important extent from

neutrinos transmitted from distant sources. The information conveyed by any

such particle concerns its existence, its spin, and its energy, from which the

fact of its creation is inferred, together with its direction of incidence and
frequency. In context with related observations, the direction of incidence

and shift of frequency convey information concerning the nature of the event,

the velocity, gravitational potential, and distance of the source. Since the

primary information is quantal in nature, the position of the source in particular

may be represented by a quantal tape of the form

n(z) 5 &
s

r5 1
n(r)n( s 1 r) . . . n(u s 1 r)q(r)(z), q(r)(z) 5 1±2 (1 1 izk a (r)

k ) (55)

depending on a vector z with components z k (k 5 1, . . . , d, where d 5 2u 1
5) and satisfying

zz 5 ztr h z 5 1, (ztr h )k 5 zk 5 h klz
l (56)

The tape is constructed symmetrically from s sets of anticommuting matrices

a (r)
k , and must include s real qubits to obtain an informational metric h kl with

signature ( 2 1, 1 . . . 1) in d dimensions. The z k can be interpreted as parame-
ters of the continuous group of transformations with elements of the type

u(z8, z) 5 exp(1±4 zkz8l[ a k , a l]) (57)

taking n(z) to n(z8). The spinor factors x (z) and x (z) of n(z) defined as in
(49) undergo the corresponding transformations

x (z8) 5 u (z8, z) x (z), x (z8) 5 x (z)u 2 1(z8, z) (58)

and the parameters can in turn be expressed in terms of x (z)[ a k , a l] x (z).
The separation s of two points z and z8 is given in general by

s 2 5 (z 2 z8)(z 2 z8) 5 2(1 2 zz8) (59)

but reduces to ds, where ds2 5 d zdz if z8 5 z 1 dz is sufficiently near to z.
When points of space-time are assigned coordinates x l in the manner

described, the vector z becomes a function z (x) of the coordinates, and dz
5 z l dx l , where z l 5 - z / - x l . It follows that

ds2 5 g l m dx l dx m , g l m 5 z l z m 5 z k
l h klz

l
m (60)

so that g l m is the Riemannian metric tensor, with a contravariant form g l m

defined by g l n g n m 5 d l
n . The Christoffel affinity, defined in the usual way,



Quantal Information Theory 2749

is G l
m n 5 z l z m , n , where z l 5 g l m z m and z m , n is the ordinary derivative of z m

with respect to x n . It follows that the covariant derivatives of z m and z m are

given by

z m / n 5 (1 2 zÄ )z m , n 5 zÄ n z m , z m / n 5 z m zÄ n , zÄ 5 z l z l (61)

where z l z l denotes the outer (matrix) product, and is easily seen to be a

projection. The Riemannian curvature tensor may be defined by

R
r
l m n 5 z r (z l / m / n 2 z l / n / m ) 5 z

r
/ m z l / n 2 z

r
/ n z l / m (62)

In its passage between its source and a point of observation, a particle traverses

empty space. Einstein’ s field equation for empty space, with the usual cosmo-
logical constant k , is

R l m 5 2 R n
l m n 5 k g l m (63)

where if k 5 3/R 2, R is of the order of the distance of the cosmic horizon.
With the help of (62), (63) can be written entirely in terms of the vector z
and its covariant derivatives:

z n
/ n z l / m 2 z n

/ m z l / n 5 z l k z m (64)

where k may now be a matrix in general. As the author has shown elsewhere
(Green, 1998), from this starting point, here given an informational basis,

Einstein’ s theory of gravitation and its cosmological extensions can be devel-

oped in a remarkably simple form. The gravitational field equations can be

derived from the action

Ag 5 # [z l zÄ m (zÄ m z l 2 zÄ l z m ) 2 z l k z l ) 2 tr( k zÄ )] d 4x (65)

and it is possible to formulate generalizations of Dirac’ s equation and Max-

well’ s equations in bispinor form which take account of both gravitational

and cosmological effects. The result is to show how these, as well as many
other areas of theoretical physics, can be related to quantal information theory.
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